% Moving force across a single span beam, solved analytically clear all %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- % School of Mechanical and Manufacturing Engineering, University of New % South Wales % Author: Gareth Forbes % Date created: 1/2/08 % Date last modified: 10/11/08 % ------------------------------------------------------------------------- % ------------------------------------------------------------------------- % Revision number: 1 % Description of changes to latest revision: % Updated to allow animated plotting for any input values. Change of plot % y-axis labels to show relative displacement. Solution for all input % values with 101 steps in direction and time plane. % ------------------------------------------------------------------------- % ------------------------------------------------------------------------- % Description of Script: % Creates the response of a single span beam under the influence of a % moving force according to the analytical equations derived in [1]. Note, % the formulation used here is only valid for light damping at various % speeds, and with no damping at non-critical speeds. Two movies, at % different moving load speeds have been created and uploaded at [2] and % [3] % % % References: % [1] Fryba, L., Vibration of solids and structures under moving loads. % 3rd ed. 1999, London: Thomas Telford. xxvii,494 p. % [2] http://www.youtube.com/watch?v=XhU_IGx2CdU % [3] http://www.youtube.com/watch?v=jXIiQlnzChY % ------------------------------------------------------------------------- % ------------------------------------------------------------------------- %%%%%%%%%%%%%%%%%%%%%%%%%%% % input varibales for analysis k = 5; %number of terms in expansion P = 100; %load (N) beta = 0.1; % non-dimensional damping parameter %%%%%%%%%%%%%%%%%%%%%%%%%%% % material and geometric constants L = 30480; %length of beam (mm) E = 200000; %youngs modulus (MPa) b = 2438; % width of cross section h = 20; % height of cross section A = b*h;% cross sectional area of beam (mm^2) rho = 7.8E-9;% density of beam material (kg/mm^3) I = (b*h^3)/12;% second moment of area (mm^4) % critical speed (resonance of first mode) cr = (pi/L)*(sqrt(E*I/rho/A)); % speed of load c = 0.5*cr;% (mm/s) alpha = c/cr; % non-dimensional speed parameter omega = pi*c/L; omegaj = ([1:k]*pi/L).^2*(sqrt(E*I/rho/A)); omegab = beta*omegaj(1); % length vector; x1 = 0:L/100:L; x1 = x1'; x = repmat(x1,1,length(x1)); % time vector tt = L/c; step = tt/(length(x1)-1); t1 = 0:step:tt; t = repmat(t1,length(t1),1); % static deflection of beam at mid span u0 = (P*L^3)/(48*E*I); % (mm) n = round(alpha); if beta == 0; u2 = 0; else if n > 0; if abs(n-alpha)<0.01; u2 = (u0/2/n^4)*(exp(-omegab*t).*sin(n*omega*t)-(n^2/beta)*cos(n*omega*t).*(1-exp(-omegab*t))).*sin(n*pi*x/L); else u2 = 0; end else u2 = 0; end end u = 0; for j = 1:k; if abs(j-alpha)<0.01; u1 = 0; else u1 = u0*(1/(j^2*(j^2-alpha^2)))*(sin(j*omega*t)-(alpha*exp(-omegab*t)/j).*sin(omegaj(j)*t)).*sin(j*pi*x/L); end u = u +u1; end u3 = u +u2; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % creation of movie for i = 0:1:length(x1)-1; ax1 = (0:100)*L/100; subplot(2,1,1), plot(ax1,-u3(:,i+1)/u0,'linewidth',1.5,'color','r'); xlabel('beam length (mm)') ylabel('deflection (u/u0)') title('Beam deflection under load') axis([-0.03*L 1.03*L -1.7 0.6]) line([i*L/100 i*L/100],[0-(u3(i+1,i+1)/u0) 0.5-(u3(i+1,i+1)/u0)],'Color','k','linewidth',2) line(i*L/100,(-u3(i+1,i+1))/u0,'Color','k','marker','V','MarkerSize',3,'linewidth',3) % location of first supports a = [1 0]; b = [L+1 0]; % height of support h = 0.5; % support 1 line([a(1) a(1)+h*L*0.03],[a(2) -h+a(2)],'linewidth',1); line([a(1)-h*L*0.03 a(1)+h*L*0.03],[-h+a(2) -h+a(2)],'linewidth',1); line([a(1)-h*L*0.03 a(1)],[-h+a(2) a(2)],'linewidth',1); % support 2 line([b(1) b(1)+h*L*0.03],[b(2) -h+b(2)],'linewidth',1); line([b(1)-h*L*0.03 b(1)+h*L*0.03],[-h+b(2) -h+b(2)],'linewidth',1); line([b(1)-h*L*0.03 b(1)],[-h+b(2) b(2)],'linewidth',1); % ax2 = (0:100)*tt/100; subplot(2,1,2), plot(ax2(1:i+1),-u3(51,1:i+1)/u0,'linewidth',1.5,'color','r'); xlabel('time (s)') ylabel('deflection (u/u0)') title('Deflection at the centre of the beam') axis([-tt/20 21*tt/20 -1.7 0.6]) M(i+1) = getframe(gcf); end %movie2avi(M,'a','compression','none','quality',100)