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Abstract 

Developments have recently been made in analysis of bicycle self stability. 

Applicability of benchmarked linearized dynamics equations to a variation of 

modern bicycle designs is investigated. Results gained through experimentation on 

an instrumented bicycle with variable geometry are compared to predicted results.  

Precise three dimensional modeling is used to calculate bicycle mass properties, for 

use in dynamics equations. Strong correlations between experimental and predicted 

results are found over large variations in bicycle geometry. 
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1 Introduction 

Bicycles have remained a prominent part of society since their inception in the 

1860s. The basic safety bicycle design has evolved in several directions which are 

commercially successful today. The market is dominated by road and track bikes, 

commuter bikes and mountain bikes. (Herlihy, 2004) 

This thesis focuses on the variations in design of popular modern bicycles, and their 

influence on stability and handling characteristics. The handling properties of a 

bicycle are significant in how safe it is to ride, as well as how difficult it is to learn to 

ride on. While handling properties as felt by the rider are subjective, predictions may 

be made through knowledge of dynamic properties, particular those related to 

stability.  

Through more than a century of development, successful bicycle configurations have 

been reached. However, much of this development has been through a process of 

evolution, rather than application of sound mathematic knowledge.  
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While variations exist in modern bicycle design, basic layouts remain similar across 

popular styles.  

 

Figure 1: Frame Components Layout, Ellis 953 Road Frame (elliscycles.com) 

Variations in any of the above components will affect dynamics of the bicycle. Most 

lengths and angles in a frame are interdependent, that is, one variation in component 

design will necessitate another. Wilson et al, (2004), states that the influence of trail 

is the most noticeable design characteristic to the rider. 
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Figure 2 Head Angle and Trail, on a Surly Steamroller, (surly.com). 

Trail varies with alterations to head angles, wheel diameter, fork length and shape. 

The contrast in these parameters is clear across modern style of bicycle.  

The road racing or track style bicycle in Figure 2 shows a steep head angle, and 

relatively short trail. Paterek (1985) describes the feeling of handling produced by 

steep head angles as stiff. This style of bicycle makes sacrifices in stability, to make 

gains in responsiveness to rider input. 

The commuter or comfort style of bicycle in Figure 3 has a more relaxed head angle, 

as well as greater mechanic trail, due to the increased rake, or curve, in the forks. 

This style of bicycle offers comfortable riding with minimal rider input to maintain 

stability. 
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Figure 3 Commuter Bike, Giant Explorer (giant-bicycles.com) 

  

In the most extreme instance, the downhill mountain bike shown in Figure 4 has a 

dramatically reduced head tube angle. Disregarding suspension, the geometric design 

aims to offer stability at high speed, through a resilient front end over rough terrain, 

minimizing effect of disturbances to steering angle by rocks and surface 

irregularities. (Paterek, 1985) 

 

Figure 4 Downhill Mountain Bike, Mongoose EC-D (mongoose.com) 
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2 Bicycle Research History 

Bicycles have been the subject of much research throughout their development. This 

thesis studies self stability of bicycles, which until recently had not been completely 

captured and verified mathematically. The work of Meijaard et al (2006), which 

produced a benchmarked set of dynamics equations, is the definitive resource for 

stability analysis. 

While qualitative analysis of bicycle dynamics has been undertaken since as early as 

1869, with Rankine introducing countersteer, most papers did not contain 

explanation for the ability of a bicycle to remain upright uncontrolled. In 1896 Sharp 

discussed stability without steering input, but explained that it was due to rider lean 

inputs, inducing steer through gyroscopic precession of the front wheel. 

A significant paper dispelling some stability myths was that of Jones, published in 

1970. Through a series of attempts at building an “unrideable bicycle” he dispelled 

the common belief that a bicycle’s stability is due entirely to gyroscopic precession 

of the front wheel. He also demonstrated instability of a bicycle with negative trail. 

Jones’ paper lacked mathematical theory to support his findings. 

 

Significant research prior to that of Meijaard et al, in relation to development of 

dynamics equations, began in 1897 with Emmanuel Carvallo’s paper on bicycles, 

introducing mathematically the concepts of countersteer to initiate turns, and the 

importance of trail in stability. The absence of front frame inertia is the major short 

fall of Carvallo’s work, which has otherwise been proven correct, and included 

eigenvalue analysis leading to stable speed ranges. 
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Whipple’s paper of 1899 presents non linear analysis of a bicycle, with minor errors, 

which become irrelevant when the expressions found are linearized. Whipple was 

the first to derive equations to describe the motion of a bicycle, and explain how a 

bicycle could balance itself under the right conditions. His work included the 

development of the Whipple Bicycle Model, consisting of four rigid laterally 

symmetrical parts connected by ideal hinges. Parts are front frame, rear frame, front 

wheel and rear wheel. This model is used by the Meijaard et al, 2006. 

 

 

Somerfield, and Klein (1903) used Newtonian physics to analyze the front and rear 

frames. The paper was written in German, but the translation begins with the 

statement that the bicycle is in unstable equilibrium and must be learnt to ride. The 

paper focused on the role of the front wheel as a gyroscope in maintaining stability. 

The significance of this effect is not as great as was thought at the time. The 

equations derived agree with those of Dohring, 1955, (according to Meijaard et al, 

2006), who presented the first correct equations of the Whipple model presented in 

open literature. This work included eigenvalue stability analysis on two motorcycles 

and a scooter.  

 

In 1967, Neımark and Fufaev presented a book on non holonomic dynamics, 

featuring a derivation of the equation of motion of the Whipple bicycle model. In 

discussing this paper, Meijaard et al, (2006), write the equations derived show self 

stability, when the included steering stem friction term in sufficiently large. The 

paper had error and lack factors contributing to stability 
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In the 1970s, the Cornell Aeronautics Laboratory ran a research program on bicycles 

and motorcycles, resulting in 20 papers being produced. In particular, Rice and 

Roland’s 1970 paper is the first to introduced the concept of mechanical trail, seen in 

Figure 2. Their model also included tyre slip and rider lean, giving a 8x8 first order 

equation. 

The terms weave and capsize were first used in 1971 by Sharp, R., describing the 

unstable region of eigenvalues. His equations allow the vertical ground force on the 

front wheel to do work on the bicycle, and as such, his linearized equations are 

approximations only. It has since been show that this paper featured several 

typographical and algebraic errors. 

In 1979, Psiaki wrote an undergraduate honors thesis describing motion for a bicycle 

with an upright rider, and a forward leaning rider, in no hands steer. Equations of 

motions were agree with later work of Meijaard et al (2006). 

Equations of moments written in compact notation were written by Papadopoulos, 

(1987), also a coauthor of the Meijaard et al (2006) paper.  

Hand’s 1988 Cornell M.Sc thesis comprehensively compares previous literature, 

finding several agreeing equations. His own equations neglected terms in the 

Lagrangian, which drop out in linearization. 

In 2004 Schwab, Meijaard, and Papadopoulos write a draft of the benchmark study 

on which this project is based, and present it at a conference. This work is review by 

Astrom, Klein, and Lennartsson in 2005, who also partake in a parameter study 

based on Schwab (2004) and Papadopoulos (1987). The majority of their work was 

based on super stable bike for teaching disabled children to ride. 
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An experimental validation of Meijaard et al’s benchmark equation was carried in 

2006 (Kooijman, J. D.). This experiment featured an instrumented bicycle, and 

showed agreement with equations in the range of 2m/s to 6m/s. An inverted front 

fork was used to greatly increase trail, and produce stability a lower range of speeds. 

A regular bicycle configuration was not tested. 
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2.1 Linearized Dynamics Equation for Bicycles 

Meijaard, Papadopoulos, Ruina, Schwab 2006 

In 2006, J.P. Meijaard et al published the paper, “Linearized dynamic equations fro 

the balance and steet of a bicycle: a benchmark and review”. This presents canonical 

linearized equations of motion for the bicycle. Derivation is carried out by hand in 

two ways, and is checked against two non-linear dynamics simulations. The paper 

conducts a complete review of past literature, concluding that there was no previous 

peer reviewed paper written in English that presents complete and correct dynamic 

equations for the Whipple bicycle model (Figure 5). 

 

Figure 5 Bicycle Model (Meijaard, 2006) 

 

Meijaard et al derive equations for the Whipple bicycle model, represented as 

follows. The model consists of four rigid bodies: a rear wheel R, a rear frame and 
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rider body combined as B, a fork and handlebar assembly combined as H and a front 

wheel F. The model has symmetry between left and right sides. Ideal assumptions 

used are knife edge rolling contact rather than toroidal contact of tyres. Friction at 

wheel and steering axes, non rigidity of materials, tyre compliance and tyre slip are 

neglected. Rider inputs are included, but set to zero in the analysis of self stability, 

and rider movement is neglected. 

The characteristics of the bicycle model used by Meijaard et al are captured by 25 

parameters. Parameters are defined with the bicycle upright on level ground with 

zero steer angle. Parameters are in relation to a coordinate system defined by the 

SAE 2001 convention, with the origin at the rear wheel ground contact point, x axis 

towards the front contact point, z axis down, and y axis to rider’s right. 

 

Meijaard et al describe the bicycle configuration in terms of parameters in  

Table 1.  
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Parameter Symbol Units 

Wheel base ω m 

Trail t m 

Head angle α degrees 

gravity g N/kg 

Forward speed v m/s 

   

Rear wheel   

Radius rR m 

Mass mR kg 

Mass Moment of inertia (IRxx,IRyy,IRzz) m 

   

Rear Frame   

Position of centre of 
mass (xB,yB,zB) m 

Mass mB kg 

Mass moments of 
inertia 

















BzzBzx

Byy

BxzBxx

II

I

II

0

00

0

  

kgm
2
 

   

Front Frame   

Position of centre of 
mass (xH,yH,zH) m 

Mass mH kg 

Mass moments of 
inertia 

















HzzHzx

Hyy

HxzHxx

II

I

II

0

00

0

  

kgm
2
 

   

Front wheel   

Radius rF m 

Mass mF kg 

Mass Moment of inertia (IFxx,IFyy,IFzz) m 
 

Table 1: Bicycle Parameters 
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Figure 6 Configuration Space 

From Figure 6 the bicycle’s absolute position relative to a global reference frame 

xyz, with origin 0 may be defined.  With rear wheel contact point at xp, yp known, 

global position of all other parts of the bicycle may be calculated from known values 

of rear frame yaw angle, ψ, rear frame lean angle, φ, and steer angle, δ. Other 

parameters necessary to define dynamics are front and rear wheel rotation, θR and θF.  

Rear frame pitch, θB is not a configuration variable as it may be calculated through a 

3D trigonometric relation that keeps maintains front wheel ground contact. Other 

aspects of location such as locations such as wheel centre may be calculated from the 

seven dimensions of configuration space, xp, yp ψ, φ , δ, θR and θF.. 

Meijaard et al, state that the model consists of three velocity degrees of freedom, 

once dynamic restrictions are placed on the 7 dimensional configuration space, such 

as tyre side slip not being allowed. Velocity space may be described by lean rate of 

the rear frame, steering rate and rotation rate of rear wheel, relative to rear frame. 
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In deriving linearized equations of motion, the first solution is the case of straight 

ahead, upright motion at any constant speed, with no forcing. This is the reference 

solution to the governing equations of motion. This first linearized equation of 

motion is reach through 2D mechanics in the xz-plane, giving 

( )[ ]
R

TIrrImr RFyyFRRyyTR θθ =++
••

22
 

For the remaining two velocity degrees of freedom, lean angle and steer angle, there 

are two coupled second order ordinary differential equations. The two equations can 

be combined as  

[ ] fqKKqCqM 201 =+++
•••

2vgv  

Where 







=
δ
φ

q  









=

δ

φ

T

T
f  

The terms M, C1, K0, and K2 are matrices of constants calculated from the design 

parameters of the bicycle.   

M is a mass matrix, giving kinetic energy at zero forward speed, C1 act as a 

‘damping’ matrix (although there is no true damping as the system is conservative), 

K0 and K2 are stiffness matrices, arising from gyroscopic and centrifugal effects. 

Calculation of these terms, as presented in Meijaard et al (2006), may be seen in 

Appendix 1.  
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2.2 Solutions to the linearized equations 

When solved, the linearized equation gives a set of four eigenvalues, λ, for a given 

velocity. Meijaard et al (2006) present Figure 7 as the eigenvalues for their 

benchmark bicycle, over a range of velocities. 

 

Figure 7 Stability Diagram 

To extract useful information from a plot of eigenvalues of a system, an analysis 

based on bifurcations is necessary. Bifurcations of a system give rise to qualitative 

changes in dynamics. (Guckenheimer, 2007).  

Hassard et al (1981) put forth that a system described by a Jacobian matrix, with a 

pair of complex conjugate eigenvalues, will be stable when eigenvalues, excluding 

their imaginary parts, are entirely negative. An instability will occur when the real 

part of an eigenvalue becomes positive.  The appearance of this solution out of a 
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state of equilibrium is known as a Hopf bifurcation. Hopf bifurcations are seen in the 

weave and capsize lines on either side of the stable region in Figure 7. 

The other type of bifurcation seen in the eigenvalue plot is a saddle node bifurcation. 

The real part of the weave mode emanates from a pair of lines coming together in a 

saddle node bifurcation at sub-stable velocity. Hunt et al (2004), show that instability 

arises at the point a which a single line splits into two. Addition saddle node 

bifurcations in a system increase instability. The roll of saddle node bifurcations in 

stability analysis may be more easily understood when an analogy is drawn to the 

quadratic recurrence equation, which has the suggested use as a random number 

generator. A bifurcation diagram of iterations shows a series of progressively less 

stable regions, leading to chaos, as seen in Figure 8. 

 

Figure 8 Quadratic Recurrence Bifurcation Diagram (Weinstein, Wolfram Maths)  

Similar in appearance on an eigenvalue plot are pitchfork bifurcations, in which the 

original stable mode splits, to form three more modes. In a supercritical pitchfork 

bifurcation, two of the three formed modes will be will be stable, with one unstable 

mode. A subcritical pitchfork bifurcation results in two unstable and one stable 

mode.  
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2.3 Data Analysis 

To extract useful information from experimental data points, parameters of a model 

must be found. In the context of bicycle dynamics, least squares fitting is most 

practical, due to its ability to fit a wide range of functions. 

Least squares fitting works on the principal of reducing residual sum of squares. 

(Weisberg, 2005). As seen in Figure 9 , residuals are the vertical distance between 

the fitted line and the actual data points. Due to residuals being squared, the effect of 

outliers on fit is magnified. Method of data processing is discussed in more detail in 

Part 6.1. 

 

Figure 9 Residuals 
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3 Test Bicycle Design 

To test the applicability of the linearized dynamics equation to a range of modern 

bicycle styles, a test bicycle with variable head tube angle was designed and built. 

The head angle was chosen as the variable factor due to its influence on handling 

being easily detected by a rider. The design aims to replicate steep head angle 

designs of modern track and road bikes, through commuter style bikes, to the slacker 

angles of downhill mountain bikes.  

The variation of head tube angle affects other factors, such as wheel base, trail, 

centre of mass and moments of inertia. It is not possible to vary any individual 

factor, while holdings all others constant. As such, mathematical parameters of the 

bicycle must be recalculated for each head angle tested, before comparison to 

theoretical results. 

Through the use of a single bicycle with variable head angle, uncontrolled variables 

are reduced. Masses are kept constant, wheel and tyre properties and most geometry 

is kept constant, as oppose to performing experiments using a  number of different 

bikes. Also, mass properties of most parts will need only be calculated once, through 

one three dimensional model. 

The design of the variable head angle mechanism focused on rigidity, fine 

adjustment, and ease of use. It was necessary to replicate the original configuration 

of the bike, as well as the head angles seen on other styles of bicycle.  

Manufactured head angle is shown through a range of angle in Figure 10. Drawings 

are included in appendix.
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Figure 10 Variable Head Angle 
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The head tube was cut from the frame, and a boxed section added, made from 2mm 

mild steel. Side plates were welded to the top and down tubes of the rear frame, and 

a pivot point drilled through the assembly. The head tube pivots on an 8mm bolt, and 

is restrained with a sliding aluminum linkage on the left side. 

All manufacturing was carried out by the author, with a manual arc welder, angle 

grinder, electric drill and hand tools. Particular attention was paid to keeping the 

assembly square during welding and drilling, to ensure alignment of the bicycle. 

Other modifications to the original bike were removal of crank assembly, saddle, 

brakes, handlebars, and cable stays on the frame. These components were not 

required in experimentation, and removal aided accurate computer modeling. 

The front brake caliper was inverted to prevent the front wheel turning more than 

90° and damaging the steering sensor. 

Tyres had a smooth, grooved tread pattern for low rolling resistance and low 

vibration, compared to more aggressive tread patterns. Tyre pressure was maintained 

at 30psi. Wheel and steering head bearings were cleaned and greased, and hubs 

adjusted for minimal play before testing. Wheels were checked and found to be true. 

To prevent damage to instrumentation, side wheels were added. This assembly was 

kept as light as possible to minimize changes to the bike’s original mass properties. 

Small caster wheels were held approximately 750mm from each side of the bicycle, 

and 300mm above the ground. This restricted lean angles to around 22 degrees, and 

prevented damage to equipment under unstable conditions. 

A rear rack was added to house the accelerometer, brackets added for the on board 

computer, and a restraint for the steering potentiometer, discussed in more detail in 

an upcoming section. 
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4 Modelling 

To implement the linearized equation of motion, characteristics of the bicycle must 

be known. Due to the complex form of the bicycle, calculating centres of mass and 

moments of inertia for every tested configuration was not practical. As such, the test 

bicycle was measured, and modeled accurately in three dimensions using 

ProEngineer, with the inclusion of a variable head tube angle. An output of mass 

properties was then able to be produced for each wheel, front frame, and rear frame 

with instruments attached.  

Measurements were made with Sontax digital vernier calipers, tape measure and 

large ruler. The calipers were accurate to 0.01mm, and were used for tube diameter 

and material thicknesses. Larger dimensions were taken to the nearest millimeter. 

Angular measurements were taken with a Craftright digital angle gauge. The gauge 

had a resolution of 0.1 degrees and was tested for accuracy by inversion on various 

slopes. 

 

Figure 11: Craftright Digital Angle Gauge. 
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Figure 12: Instrumented Bicycle 

Trail and Wheel Base vs Head Angle
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Figure 13: Variation of Trail and Wheelbase
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Figure 14: Complete 3D Model 
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The model was developed as a mechanism, with constraints as follows. The origin of 

the coordinate system was held at the rear wheel ground contact point, with the 

system oriented as seen in the Meijaard (2006) bicycle model. The head angle was 

made variable by the use of a pin constraint at the hinge point, between the modified 

head tube and rear frame. The ground contact point of the front wheel was set to 

allow movement along the x axis, governed by head angle. To maintain ground 

contact at front and rear wheels, front frame and rear frame were allowed to translate 

along their own plane of symmetry, the x-z plane. Pin joints at the front and rear axle 

locations completed the model. 

 

Figure 15 Constraint System 

 

Figure 16: Head Angle Variation 
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To verify Pro Engineer mass property outputs, calculated values were compared to 

physically measured units. The bicycle was disassembled and parts were weighed on 

a scale with 5g accuracy, and compared to Pro Engineer model mass output values. 

Parts with unknown density, or hidden internal dimensions were adjusted in the 3D 

model to concur with measured masses. 

Response of trail and wheelbase to changes in head angle was investigated, and 

shown in Figure 13. 

 

4.1 Pro Engineer Mass Properties 

Pro Engineer outputs all necessary mass properties for stability analysis of the 

modeled bicycle. With the rear wheel ground contact point positioned at the origin, 

useful properties will be produced. 

From the mass properties output file, required parameters are mass, centre of gravity, 

inertia tensor with respect to rear wheel ground contact point and with respect to 

centre of gravity, principal moments of inertia and a rotation matrix, defining 

orientation of principal axes relative to global coordinate system. 

Due to symmetry in the model, the rotation matrix takes the form, 

















−=

100

0cossin

0sincos

)( γγ
γγ

γR , 

with γ  being the angle of rotation about the z axis. Radii of gyration is produced, as 

are centres of mass of each part in an assembly. 
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To gather mass properties of individual components, relative to rear wheel contact 

point, unwanted components are suppressed, and a mass property analysis is run. 
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5 Bicycle Instrumentation 

To define the movement of the bicycle, the three velocity degrees of freedom are 

measured, that is steer angle, rear frame lean angle, and rear wheel rotation. These 

parameters are measured by sensors, sending signals to a SoundBook. The Sinus 

SoundBook Octav is a modified notebook computer, most commonly used for tasks 

in acoustics and vibration analysis. The SoundBook has 8 acoustic inputs, with a 

sampling frequency of 51.2kHz. The SoundBook is based on the Panasonic CF19 

laptop, designed as a dust, moisture and vibration proof computer. The system offers 

touchscreen operation, which is convenient when the computer is mounted on the 

bicycle.  

 

Figure 17: Sinus SoundBook (mikrofonen.se) 
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Steering angle was transmitted using a 500kΩ linear potentiometer, wired in a 

voltage divider arrangement with a 9V battery. 

 

Figure 18: Voltage divider arrangement, for steering angle, with SoundBook used as voltmeter. 

 The body of the potentiometer had the same diameter as the steerer tube of the 

forks, and was held in place with a hose clamp. The stem of the potentiometer was 

fixed relative to the head tube with a custom bracket. The most important factor in 

mounting was the elimination of movement between the potentiometer and the parts 

it referenced. 

 

Figure 19: Steering angle potentiometer, and restraint. 

9V 

500kΩ 
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The output was measured with the SoundBook through a range of known angles, 

allowing a calibration factor to be determined. Output was recorded directed by the 

SoundBook during experimentation. 

Rear wheel speed was recorded through a magnetic reed switch mounted on the 

frame, and a single pole magnet mounted on the wheel spokes. The magnet closed 

the reed switch once every rotation, sending a momentary voltage from a 9V battery 

to the SoundBook. 

 

Figure 20: Rear Wheel Speedometer 
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Figure 21: Speedometer Diagram 

The bike was also fitted with a standard wireless cycle computer (Figure 22), reading 

velocity from the front wheel, to allow velocity monitoring by the launcher during 

testing. 

 

Figure 22: Cateye Wireless Speedometer 

 

Ideally, angular rates of the rear frame would be measured with angular rate sensors 

or gyroscopes. Under the constraints of an undergraduate thesis, these were not 

available. As such, angular rates were calculated from measured acceleration values. 

A triaxial accelerometer (Figure 23) was mounted on a rack directly above the 

ground contact point of the rear wheel. Assuming no lateral motion of the rear tyre 

relative to the ground, lean may be calculated from acceleration data. 
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Figure 23: Accelerometer 

 

Figure 24: Lean of Rear Frame 

With reference to Figure 24, angular rate of rear frame is simply equal to 

acceleration multiplied by elevation (h), of accelerometer.

Lean 

Accelerometer 

Rear Wheel 
h 
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Instrument Calibration 

A calibration factor was found, to convert the steering angle potentiometer’s voltage 

output to radians. With the bicycle’s frame held horizontal, the steering angle was 

able to be precisely measured using the Craftright digital angle gauge. 

Voltage was plotted against steering angle, and the calibration equation was found to 

be 0623.05807.0 −= Vδ . 

Potentiometer Calibration
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Figure 25: Potentiometer Calibration 

 

 

Rear wheel speedometer output is a digital signal, corresponding to period of 

revolutions of the rear wheel (T). Rear wheel rotation rate may be calculated as 

TR πθ 2=
•

 

And velocity calculated as 

TDiameterV R=  
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Calibration of the accelerometer was done through inversion for each axis. With the 

axis to be held vertically, the output was measured, and then the accelerometer 

inverted, to change resting acceleration by 2g, before measuring voltage again. The 

results are as follows in Table 2, including offset, equal to resting voltage with y-axis 

vertical. 

Axis Sensitivity (V/m/s
2
) Offset (V) 

x 0.339 6.73 

y 0.054 4.8 

z 0.04638 5.1 

Table 2 Accelerometer Calibration 
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6 Experimental Procedure 

The experiments aimed to determine stable speeds of the bicycle, through a variation 

of head tube angles. Motion of the bicycle was captured by on board 

instrumentation, showing range of speeds for weave, capsize and caster. 

Tests were conducted on outdoor netball courts, with a smooth asphalt surface.   

The launch speed was limited by how fast the launcher could run, i.e. just above 

20km/h. 

Two methods were used to determine the stable speed range for a range of head 

angles. 

Firstly, the bicycle’s motion was observed, giving a subjective indication of stability. 

At each set head tube angle, the bicycle was accelerated to test speed by hand and 

released. Observations were made, as to whether the bicycle fell immediately, 

remained upright, or capsized. At speeds where the bicycle remained stable after 

being released, the launcher ran beside the bike to note the speed at which the bike 

became unstable.  

As part of subjective observations, disturbances were introduced to observe whether 

or not the bicycle recovered stability. Through gradually changing the velocity at 

which the disturbance was introduced in each test, an approximation of self stable 

velocities could be made. 

Speedometer readings and points of instability were verified through observation of 

SoundBook recording after testing. 

The second method used numerical analysis of the bicycle’s motion to find 

eigenvalues of the dynamic equation, in turn allowing a plot to be produced, showing 

stable speed range for each head angle. For each tested head angle, the bicycle was 
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released, and a disturbance introduced. The disturbance forced the bicycle to into a 

lean, followed by weave before regain of stability, or loss of stability. The analysis 

produces one set of eigenvalues, corresponding to the range of velocities over which 

they were calculated, that is, the range of speeds after disturbance at which the 

bicycle exhibited weave. In order to produce a meaningful plot from measured 

eigenvalues, results were collected for 10 velocities at each head angle, with 11 head 

angles tested. 

The motion analysis process is discussed further in an upcoming section. 

6.1 Data Processing 

To calculate a stable speed range for each tested head angle, eigenvalues had to be 

extracted from data recorded by the SoundBook. All data processing was carried out 

with MatLab. 

For all sensors, the SoundBook records a one dimensional data signal, with a known 

sample frequency of 51200Hz. This vector was multiplied by the calibration constant 

for the respective sensor to convert the data from a voltage to the required unit. 

In order to plot the data, a time vector had to be created, of the same length as the 

data signal. The interval between each time point was the period of the sampled data. 

For example, a sample of 1000000 data points at 51200Hz, requires a time signal 

19.53 seconds long, with 1/51200 second intervals. 

The initial data showed considerable noise in all cases, so a 1001 point moving 

average smoothing method was applied. From this, areas of the test run exhibiting 

weave motion were visible. These areas were used in curve fitting. 
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As the motion is an exponentially decreasing oscillation, the data was fitted to the 

general equation, 

132

)( ))sin()cos(( cxcxcey xd ++= ωω  

Matlab’s curvefit interface was used. A least squares method was used, and to reduce 

the number of evaluations required, limits were set on constants. The most easily 

calculated constant was the frequency, 

  
P

π
ω

2
=  

 Where p is the period between peaks in oscillation. 

Rough limits could be set on constant c1, through observation of overall offset in the 

y axis. 
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7 Results 

7.1 Experimental Observations 

Through observation, different head angles displayed different stable velocity 

ranges. It was seen that the bike’s minimum stable speed was lower for steeper head 

angles, to a point. In all cases, it appeared that maximum stable speed was faster than 

maximum achievable launch speed.  

Most significant observations were as follows. 

At head angles greater than 66.8°, the bicycle did not correct instabilities, within the 

maximum achievable launch speed. The bike slowly fell to one side, whilst entering 

a tightening spiral. 

Self stability was observed at 66.8°, at speeds above 5.7m/s. In response to lean, the 

bike would weave, and return to an upright position. 

As the head angle was reduced, stability was observed at progressively lower speeds. 

At 62.6°, stability was observed at as low as 3.8m/s. From this point, minimum 

stable speed seemed to increase, with a 58.6° head angle exhibiting self stability 

above 4.1 m/s, and a 55.6° head angle stable above 4.2m/s. 

With a head angle lower than this the bicycle became difficult to launch, and did not 

appear to be showing self stability. 
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7.2 Calculated Stability Ranges 

Stable speed ranges were predicted using the linearized dynamics equations, with 

mass properties from the Pro Engineer model. Matlab was used to calculate and plot 

real and imaginary parts of the eigenvalues for each tested head angle.  

 

Figure 26: Eigenvalue Plot, head angle 81.9°. Black lines represent real parts of eigenvalues, 

while blue represents imaginary parts.  

At 81.9°, there is no stable velocity region. The real part of the weave move 

eigenvalue does not become negative within the tested range, and more significantly, 

not before capsize mode eigenvalue turns positive. The capsize mode begins from a 

saddle node bifurcation, turning more negative before a reversal in gradient and 

turning positive. 

The castering mode grows, before becoming progressively more negative. 

 



 47

 

Figure 27: Eigenvalue Plot, head angle 80.8°. 

Again no stability is observed. In this case the capsize mode arises from bifurcation, 

in addition to never crossing the x-axis. The area before bifurcation of the capsize 

mode line has expanded, in comparison to Figure 26. 
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Figure 28: Eigenvalue Plot, head angle 79.0°. 

At a head angle of 79°, there is no stable region. It can be seen that the saddle node 

bifurcation of Figure 27 is no longer present, and two new bifurcations have 

appeared. A second set of imaginary parts is seen, which is absent at higher head 

angles. This ends in a saddle node, at the velocity of capsize and caster mode 

creation.  
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Figure 29: Eigenvalue Plot, head angle 78.0°. 

This exhibits a region suggesting stability, marginally above 2m/s, but the capsize 

mode results from a saddle node bifurcation. Again the capsize mode arises from 

bifurcation, rather than being a separate mode from zero velocity. In general, 

features of the graph such as intercepts are occurring at a higher velocity than seen at 

steeper head angles.
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Figure 30: Eigenvalue Plot, head angle 77.0°. 

At 77° the trends seen previously continue, and the region of negative real roots 

occurs over a larger range of velocities. It can be seen that the real part of the weave 

mode is decreasing with a steeper gradient than seen previously.
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Figure 31: Eigenvalue Plot, head angle 75.2°. 

Results for 75.2° take similar form to 77°, with the seemingly stable region larger, 

and with a higher minimum stable velocity.
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Figure 32: Eigenvalue Plot, head angle 73.0°. 

A trend of larger and higher stable speed range continues, as does the presence of a 

saddle node bifurcation forming the caster and capsize modes.
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Figure 33: Eigenvalue Plot, head angle 70.3°. 

At 70.3°, the areas before bifurcation in the real modes have moved noticeably closer 

to zero velocity. The region where caster and capsize are merged is larger, as is 

apparent stable speed region.
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Figure 34: Eigenvalue Plot, head angle 66.8°. 

At a head angle of 66.8°, separate capsize and caster modes exist from zero velocity. 

As such, the addition set of imaginary parts are no longer present. At true stable 

speed range is now seen, and is larger than apparent stable speed region of previous 

graphs. Furthermore, the minimum stable speed continues to increase. At this head 

angle, results take the same form as those for the benchmarked stable bicycle used 

by Meijaard et al (2006). The minimum stable speed is 3.425m/s, and the maximum 

is 5.225m/s.
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Figure 35: Eigenvalue Plot, head angle 62.6°. 

Capsize and caster modes remain separate from zero velocity, and stable speed range 

continues to increase. At this angle, minimum stable speed is 3.83m/s and maximum 

is 6.06m/s. It is also noted that the values of the caster mode are dropping as head 

angle decreases. 
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Figure 36: Eigenvalue Plot, head angle 61.5°. 

 

Figure 37: Eigenvalue Plot, head angle 58.6°. 
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Figure 38: Eigenvalue Plot, head angle 55.6°. 

Through head angles 61.5°, 58.6°, and 55.6°, the stable speed range increase in 

magnitude and range. Caster mode values decrease. Since the 66.8°, the angle at 

which separate caster and capsize modes started to appear, the double root in the 

weave mode line has occurred at a progressively higher velocity. Subsequently, the 

pair of imaginary roots also begin at higher velocities.
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Figure 39: Stable Velocity vs Head Angle 

The response of stability to variations in head angle is seen in Figure 39. In general, 

as the head angle gets steeper, the range of stable speeds becomes narrower and 

lower. 
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7.3 Experimental Results 

For each test run, data was recorded at 51200Hz for velocity, steering angle, and 

acceleration in the x and y directions for the rear frame above the rear ground contact 

point. A typical set of results is shown in Figure 40. This set of data was recorded 

with a head angle of 80.8°. A lateral disturbance was introduced at 2.8 seconds, seen 

as a negative peak in Figure 40. This leads to a visible oscillation, before returning to 

rest, also seen in the steer angle, Figure 41. 

 

Figure 40: Rear frame lean rate, for head angle 80.8°. 
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Figure 41: Steer angle output, for head angle 80.8°. 
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Velocity is recorded as a pulse signal, shown in Figure 42. This is also displayed in 

Figure 43, as a calculated velocity, in m/s.  

 

Figure 42: Rear Wheel Speedometer Output, head angle 80.8°. 

 

Figure 43: Velocity vs time, head angle 80.8°.
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Figure 44: Lean rate curve fitting, for head angle 80.8°. 

Figure 44 shows a selection of lean rate data directly after a momentary lateral 

disturbance was applied to the bicycle. The data considered for curve fitting is 

between 3.2 and 5 seconds, where the velocity varies from 5.93m/s to 5.57m/s. 

In fitting a curve to the data, the general equation was: 

exdxbexf x ++= ))sin()cos(()( ).( ωωδ  

Giving weave frequency ω=Im(λweave) and the damping δ=Re(λweave). 

Using nonlinear Least Squares fitting, in MatLab’s curve fitting tool, the curve’s 

equation was found to be 

00603.0))56.12sin(242.1)56.12cos(8475.0()( )  -1.126( −+= × xxexf x  
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This gives an eigenvalue for the weave mode of -1.126 + 12.56i, over the velocity 

range 5.57m/s to 5.93m/s. 

Repeating this process for other runs at the same head angle gives a series of 

eigenvalues, plotted in Figure 45. 

 

Figure 45: Experimental eigenvalues, head angle 80.8°. Eigenvalues are calculated over varying 

velocities, shown as bars in the plot. Values predicted by the linearized equation are plotted as 

continuous lines, for comparison. 

The results gained for a head angle of 80.8°, show some relation to the weave mode 

lines (see Figure 7). Imaginary parts show a trend as would be expected from the 

linearized equations. Real parts of measured eigenvalues are negative, whereas the 

predicted weave line does not become negative at this head angle.  

Due to lack of stability, oscillatory behavior was only able to be invoked at relatively 

high velocity, during capsize. Increased accelerometer noise, and relatively small 

angular variation in steering oscillations led to lack of useful data.  
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Figure 46: Experimental eigenvalues, head angle 78.0°. 

 

Figure 47: Experimental eigenvalues, head angle 77.0°. 
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For head angle 78° and 77°, in Figure 46, and Figure 47, results are similar. 

Relatively close fits are apparent for Im(λ), while experimental Re(λ) is observably 

more negative than predicted. Figure 46 shows less of a trend in experimental values. 

The lack of a true stable velocity region for these bicycle configurations, due to 

previously mentioned bifurcation of caster mode, may have a negative affect on 

results. These results also bring into question the method of curve fitting particularly 

over large velocity ranges. This will be discussed in more detail in subsequent 

chapters. 

 

Figure 48: Experimental eigenvalues, head angle 75.2°. 
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Figure 49: Experimental eigenvalues, head angle 73.0°. 

 

Figure 50: Experimental eigenvalues, head angle 70.3°. 
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For head angles 75.2°, 73.0°, and 70.3° (Figure 48, Figure 49, Figure 50), it was 

possible to capture more useful data at lower speeds. At these head angles, 

experimental eigenvalues showed strong relationships to those predicted with the 

linearized equations. Through observation, eigenvalues calculated at lower velocities 

show closer adherence to predicted results. There are still outlying results which do 

not fit the predicted curve, again bringing into question the curve fitting validity. 

 

Figure 51: Experimental eigenvalues, head angle 66.8°. 

The steepest head angle observed to display self stability in the subjective analysis 

process discussed earlier was 66.8°. This is also the steepest angle analyzed to 

display an independent capsize mode line from zero velocity, rather than one arising 

from saddle node bifurcation of the caster mode. Experimental results at this head 

angle show a smoother trend than results previously discussed for steeper head 

angles. 
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Figure 52: Experimental eigenvalues, head angle 62.6°. 

 

 

Figure 53: Experimental eigenvalues, head angle 61.5°. 
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For Figure 52 and Figure 53 results generally agree with predicted values. There is 

more discrepancy amongst data calculated over smaller velocity ranges. A small 

range gives limited data with which to fit a curve, leading to inaccuracies. 

 

Figure 54: Experimental eigenvalues, head angle 58.6°. 

In Figure 54, Figure 55, and it can be seen that with a lower head angle, and higher 

minimum stable speed, it was possible to calculate real eigenvalue parts very close to 

the x-axis. At higher speed the oscillations were more pronounced in the data, 

allowing a curve to be fitted close for velocities close to the lower stable region. 
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Figure 55: Experimental eigenvalues, head angle 55.6°. 
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8 Discussion of Results 

The results gained through subjective observation, and experimental measurement 

show an agreement with those calculated using the linearized dynamics equations. 

The level of agreement varied through the range of head angles tested. 

On initial inspection of results, the most unexpected aspect is the behaviour of caster 

and capsize modes. The bifurcation of these modes was not seen in study of previous 

literature. However, it is noted that during observations of the uncontrolled bicycle, 

self stability was not present until the head angle was lowered to 66.8°. This is also 

the highest angle at which caster and capsize modes were independent from zero 

velocity. 

In conjunction with the knowledge that bifurcations increase instabilities of a 

dynamic system (Hunt et al, 2004), it may be hypothesized that the bicycle will not 

be stable with the capsize mode emanating from the merged capsize-caster mode 

line, despite all negative real roots. 

Results calculated from measured data followed the same trends as the predicted 

results, with considerable spread. It is clear that there is agreement across all head 

angles tested, although there is some conflict at higher head angles, particularly 

above 66.8°. At the highest angles, difficulty was experienced in collecting useable 

data. The bicycle was most stable, although still in capsize, at higher speeds, and it 

was difficult to induce an oscillation without the bike turning sharply, at the risk of 

flipping. At lower, less stable speeds, it was not possible to start oscillations. The 

bicycle would simply fall in the direction it was pushed. 

Accuracy of calculated results is questionable due to the curve fitting process. In 

some measured data, the resting values before and after oscillation were not equal. In 
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most cases the differences were relatively small, compared to magnitude of 

oscillations, however, in some cases they were significant. The general equation that 

was used for curve fitting may need to have a second exponential component to be 

added, to account for this apparent drift. An example of this situation is seen in the 

steer angle data from Figure 41, between 2.5 and 6 seconds. 

Another fundamental aspect of the curve fitting process is the calculation of 

eigenvalues over a range of velocities. The data oscillation curve is not truly of the 

form 132

)( ))sin()cos(( cxcxcey xd ++= ωω , because the parameters vary with 

velocity. For example, the bicycle will have a lower weave frequency at a low 

velocity than it will at a high velocity, as such ω will be different for different 

velocities. Calculation of ω over a range of velocities can only result in a 

compromise, rather than an exact value. This holds for all coefficients. If the bicycle 

maintained steady velocity over the period of the oscillation, the technique would be 

accurate. 
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9 Conclusions and Recommendations for Future Work 

This project provided experimental verification of the work of Meijaard, et al (2006). 

Previous levels of experimentation were surpassed, through testing on a range 

realistic bicycle configurations which modeled popular modern designs. 

A bicycle for use in further experimentation has been designed, built, and 

successfully used, with variable head tube angle, and instrumentation to record 

motion.  

The use of precision modeling in Pro Engineer to provide mass properties for 

complex systems has been demonstrated successfully.  

The process of extracting eigenvalues from measured dynamics data has been 

applied, with accuracy sufficient to the needs of the project. However, flaws in the 

process have been discovered, and refinement in this area is suggested in continued 

investigations. 

The techniques of this thesis may be used in the investigation of other design 

parameters, such as mass, wheel base, trail etc.  

A useful continuation would be in the refinement of the test bicycle to include 

adjustable fork rake, with the aim of holding trail constant while varying head angle, 

or vice versa. In the same way, frame length could be made variable to hold wheel 

base constant. 

Overall, this project was successful in demonstrating the applicability of the 

linearized dynamics equations of motions, to variations in popular design 

configurations seen on today’s market. 
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11 Appendix 

11.1 Appendix A: Calculation of Coefficients of Linearized 

Dynamics Equation  

Taken from “Linearized Dynamics Equations for the Balance and Steer of a Bicycle: 

A Benchmark and Review”,  J. P. Meijaard, J. M. Papadopoulos, A. Ruina and A. L. 

Schwab, 2006. 

 

. 
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11.2 Appendix B: Calculated coefficients for tested head 

angles 

 

Head Angle = 81.9019° 

M = 3.194496 -0.00573 

 -0.00573 0.054038 

   

C = 0 3.080122 

 -0.29721 0.080084 

   

K0 = -56.2981 -0.05879 

 -0.05879 -0.00828 

   

K2 = 0 6.235084 

 0 0.048741 

 

Head Angle = 80.8007° 

M = 3.179155 0.012961 

 0.012961 0.055174 

   

C = 0 3.083171 

 -0.30007 0.109574 

   

K0 = -56.1527 -0.42952 

 -0.42952 -0.06867 

   

K2 = 0 6.139038 

 0 0.090374 

 

Head Angle = 79.0046° 

M = 3.179155 0.037993 

 0.037993 0.057571 

   

C = 0 3.088251 

 -0.30431 0.14778 

   

K0 = -56.1527 -0.92982 

 -0.92982 -0.17735 

   

K2 = 0 6.004686 

 0 0.145728 

 

Head Angle = 78.0033° 

M 3.120361 0.0559 

 0.0559 0.059499 

   

C 0 3.059045 

 -0.30641 0.179224 

   

K0 -55.5908 -1.30214 

 -1.30214 -0.27066 

   

K2 0 5.822763 

 0 0.18267 

 

Head Angle = 77.0023° 

M = 3.120361 0.074534 

 0.074534 0.061573 

   

C = 0 3.079416 

 -0.30841 0.20775 

   

K0 = -55.5908 -1.66767 

 -1.66767 -0.37508 

   

K2 = 0 5.800259 

 0 0.221221 

 

Head Angle = 75.2029° 

M = 3.089471 0.102119 

 0.102119 0.06583 

   

C = 0 3.070224 

 -0.31154 0.252119 

   

K0 = -55.2927 -2.23263 

 -2.23263 -0.57021 

   

K2 = 0 5.63661 

 0 0.276426 
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Head Angle = 73.002° 

M  = 3.049195 0.134455 

 0.134455 0.071991 

   

C  = 0 3.0528 

 -0.31468 0.304298 

   

K0  = -54.9009 -2.90503 

 -2.90503 -0.84925 

   

K2  = 0 5.434465 

 0 0.33816 

 

Head Angle = 70.3015° 

M  = 2.996243 0.17203 

 0.17203 0.080847 

   

C  = 0 3.022605 

 -0.31751 0.364965 

   

K0  = -54.3801 -3.70275 

 -3.70275 -1.24809 

   

K2  = 0 5.184537 

 0 0.405459 

 

Head Angle = 66.8034° 

M  = 3.134634 0.23016 

 0.23016 0.095152 

   

C  = 0 3.207847 

 -0.31955 0.451808 

   

K0  = -56.6206 -4.87317 

 -4.87317 -1.91948 

   

K2  = 0 5.101766 

 0 0.494024 

 

 

 

 

Head Angle = 62.6035° 

M  = 2.826624 0.266375 

 0.266375 0.112444 

   

C  = 0 2.888107 

 -0.31967 0.51522 

   

K0  = -52.6654 -5.81499 

 -5.81499 -2.67574 

   

K2  = 0 4.470078 

 0 0.548996 

 

Head Angle = 61.5039° 

M  =  2.800453 0.278311 

 0.278311 0.117569 

   

C  = 0 2.863598 

 -0.31929 0.53372 

   

K0  = -52.3941 -6.09746 

 -6.09746 -2.90909 

   

K2  = 0 4.368701 

 0 0.563991 

 

Head Angle = 58.6029° 

M  = 2.729476 0.307965 

 0.307965 0.131643 

   

C  = 0 2.793277 

 -0.31752 0.578756 

   

K0  = -51.6483 -6.81989 

 -6.81989 -3.55293 

   

K2  = 0 4.103026 

 0 0.597364 
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11.3  Appendix C Drawings 
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