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The general idea 

A phase modulated signal is a type of signal which contains information in the 
variation of its phase, an example of a phase modulated signal, in its simplest form, is 
a single sine wave modulated by another sine wave, such as: 

    cos sinx t A t t           (1) 

Evidently phase demodulation of a signal involves reconstructing a signal such that 
one can characterise how the modulated signal’s phase changes with time. Phase 
demodulation is therefore based on this simple idea of setting out to measure how the 
phase of the signal varies with time. 

For the above simple phase modulated signal, a pragmatic approach might lead you to 
consider that the measurement of the phase as in fact being trivial by taking the 
inverse cosine of the time series ( )x t . This will though result in an erroneous solution. 

Without going into detail, which can be proven to oneself by an interested reader, the 
inversion of the trigonometric function in the time domain results in an erroneous 
solution essentially due to the ambiguity of the trigonometric function. For instance, 
the cosine trigonometric function is ambiguous in that the phase angles cannot be 
distinguished between being in the 1st and 4th quadrant on the unit circle or similarly 
between the 2nd and 3rd quadrants. 

However if we express the above example as a complex exponential, 

    sinj t tx t Ae           

then characterising the phase at any instant in time could be simply obtained by 
observing the angle between the real and imaginary value of the complex signal at 
that same instant in time. 

Thus expressing a real signal in a complex form, of which the real part is the original 
signal, is the aim of frequency domain Hilbert transform phase demodulation. This 
complex signal representation is often referred to as the analytic signal. 

Therefore it needs to be set about seeking how to change our real signal into its 
complex form. 

How to implement (the maths) 

By utilising Euler’s formula, 

    cos sinje i     
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the above simple example signal, equation (1), can be representing in its analytic form 
by adding the original signal with the sine of the instantaneous phase (the 
instantaneous phase being ( ) arg[ ( )]t x t  ) of the original signal multiplied by the 
imaginary unit ‘i’. So in order to construct the analytic signal we need to find a way of 
transforming a cosine into a sine. It so happens that the transform for changing 
cosine’s to sine’s and visa versa is called the Hilbert transform, being: 

 
   
   

sin cos

cos sin

H t

H t t

    
   

t
 

where  is the Hilbert transform operator. H

Nothing more needs to be discussed about the Hilbert transform itself, suffice to say 
that it is the technical name of the process to be used here. 

We will now show a convenient way of constructing the analytic signal for our 
example signal with a judicious use of the Fourier transform. 

If we first represent a cosine in its complex form: 

    cos
2

j t je e
f t t

t  
    (2) 

Also given that the Fourier transform of a signal is: 

    1

2
j tf f t e dt


 


   

Therefore the Fourier transform of (2) is: 

       2f            (3) 

where   is the Dirac delta function. 

If we now set the negative frequencies of equation (3) above to zero, multiply by 2, 
then inverse Fourier transform we get a new function  g t , where 

   j tg t e   

It is seen that  is the previously defined analytic signal of  g t  f t . So you can see, 

by taking a signal into the frequency domain by Fourier transformation, setting 
negative frequency’s to zero and doubling all positive frequency’s then we have 
managed to add a real signal with the complex multiplied Hilbert transform of the 
same signal giving the so called analytic signal. It will now be shown, with 
application, how to implement this practically to phase demodulate a signal. 

How to implement (matlab example) 

(All steps can be cut and pasted into matlab’s desktop window) 

Create a modulated signal in the same form as in equation (1) 

A = 1; %magnitude 
tp = 2^12; %number of time steps 
omega1 = 240; %carrier freq 
omega2 = 10; %modulation freq 



gamma = pi/7; %phase offset 
beta = 5; %modulation amplitude 
t = 0:2*pi/tp:2*pi*(1-1/tp); %time vector 
x = A*cos(omega1*t+gamma+beta*sin(omega2*t)); 
%phase modulated signal 
plot(t(1:round(length(x)/omega2)),x(1:round(length
(x)/omega2))) %plot modulated signal 
xlim([0 t(round(length(x)/omega2))]) 
xlabel('time (s)') 
ylabel('magnitude') 
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Figure 1. Time series of equation (1). Note that the phase modulation is not readily visible 

Transform the signal into the frequency domain 

ff = fft(x); %fourier tranform of time signal 
ax = linspace(-tp/pi/4,(tp-2)/pi/4,tp); %x axis 
dbf = 20*log10((abs(ff)/length(ff)*2+10E-12)/10E-
12); %change spectrum into dB’s 
dbf = fftshift(dbf); %shift spectrum for display 
plot(ax,dbf); %plot modulated signal spectrum 
xlim([-tp/pi/4 tp/pi/4]) 
ylim([0 1.2*max(dbf)]) 
xlabel('frequency (rad/s)') 
ylabel('magnitude dB rel. 10 ^{-12}') 
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Figure 2 Spectrum of phase modulated signal as in equation (1) 

Set negative frequencies to zero, and double all positive frequencies (remember not to 
double the zero frequency) and inverse transform back to the time domain to create 
the analytic signal 

gf = ff; %create dummy variable 
gf(2:end) = 2*ff(2:end); %double positive freq’s 
gf(end/2+1:end) = 0; %set negative freq’s to zero 
g = ifft(gf); %transform back to time domain 
dbg = 20*log10((abs(gf)/length(gf)*2+10E-12)/10E-
12); %change analytic spectrum in dB’s 
dbg = fftshift(dbg); %shift spectrum for display 
plot(ax,dbg); 
xlim([-tp/pi/4 tp/pi/4]) 
ylim([0 1.2*max(dbg)]) 
xlabel('frequency (rad/s)') 
ylabel('magnitude dB rel. 10 ^{-12}') 

(Note the analytic signal can be created in one step with the use of the matlab 
command ‘hilbert’) 
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Figure 3 One sided spectrum, or spectrum of the so called analytic signal 

Now calculate the instantaneous angle of the analytic signal and the unwrapped 
instantaneous phase of the original signal (as the matlab command angle only gives a 
value between 0:2pi, use the unwrap command to give the non-bound limited phase) 

pha = angle(g); %instantaneous phase of analytic 
%signal 
phau = unwrap(pha); % unwrap phase 

As the instantaneous phase is given by  sint t      
t

, it can be seen the 

instantaneous phase increases linearly with time due to  , the linear offset  n
to be subtracted from the instantaneous phase to obtain the modulation term 

t eeds 

 sin t   . 

If the carrier frequency is known this can be done by multiplying the carrier frequency 
by the inverse of the sampling frequency and subtracting from the unwrapped 
instantaneous phase, or if the carrier frequency is unknown then the linear fit of the 
unwrapped phase will give the estimate of t . This method is used here. 

p = polyfit(t,phau,1); %linear fit to unwrapped 
%phase 
p(2) = phau(1); 
omega1t = polyval(p,t); 
phaus = phau - omega1t; %subtract linear offset 

Now observe the spectrum of the modulating signal 

mf = fft(phaus); %spectrum of phase demodulated 
%signal 
dbmf = 20*log10((abs(mf)/length(mf)*2+10E-12)/10E-
12); %change spectrum to dB’s 
dbmf = fftshift(dbmf); %shift spectrum for display 
plot(ax,dbmf); 
xlim([0 10*omega2/2/pi]) 
ylim([min(dbmf) 1.2*max(dbmf)]) 



xlabel('frequency (rad/s)') 
ylabel('magnitude dB rel. 10 ^{-12}') 
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Figure 4 Spectrum of the phase modulating signal with linear fit of carrier frequency 

The mass line can be seen to be due to the linear fit not being able to exactly match 
the linear phase increase. If the actual linear phase is used then the mass line can be 
seen to be removed: 

phaus2 = phau - omega1*t; %removal of linear phase 
%increase if carrier freq is known 
mf2 = fft(phaus2); 
dbmf2 = 20*log10((abs(mf2)/length(mf2)*2+10E-
12)/10E-12); 
dbmf2 = fftshift(dbmf2); 
plot(ax,dbmf2); 
xlim([0 10*omega2/2/pi]) 
ylim([min(dbmf2) 1.2*max(dbmf2)]) 
xlabel('frequency (rad/s)') 
ylabel('magnitude dB rel. 10 ^{-12}') 
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Figure 5 Spectrum of the phase modulating signal using known carrier frequency 

If we now observe the phase and amplitude of the modulation signal, they are found 
to be very close to the actual values 

gammae1 = abs(mf(1))/length(mf); 
betae1 = abs(mf(omega2+1))/length(mf)*2; 
gammae2 = abs(mf2(1))/length(mf2); 
phie1 = angle(mf(omega2+1))+pi/2; 
betae2 = abs(mf2(omega2+1))/length(mf2)*2; 
phie2 = angle(mf2(omega2+1))+pi/2; 

Table 1 Actual and estimated signal parameters after demodulation 

 Actual Linear fit of carrier freq. Known carrier freq. 

  5 4.9696 5 
  0.4488 0.4773 0.4488 
  0 0 0 

Bandwidth considerations 

Some considerations on the bandwidth of both the modulating signal and the carrier 
frequency relationship will now be discussed. Three general rules of ‘thumb’ will be 
given for bandwidth’s which will commonly result in a phase modulated signal which 
can be demodulated with conventional techniques. 

Despite the discussion of the various bandwidth considerations that will be developed 
below, first and foremost the major requirement for accurate demodulation is the 
separation of the negative and positive frequency sidebands in the signals spectrum. 
This criteria is the application of the initial condition of Bedrosian’s Theorem [1]. 
This theorem states in its most succinct form, when applied to a phase modulated 
signal, that the respective frequency domains of the carrier and modulating functions 
are non-intersecting and that the frequency of the carrier is higher than the modulating 
frequency for the general solution of the Hilbert transform to hold [2]. 
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Whether this separation is present is often evident from simply viewing the spectrum, 
as can be seen in Figure 2 where the positive and negative frequency sideband regions 
are clearly separated. However when this is not evident from simply viewing the 
spectrum some rules of ‘thumb’ which can be applied to help achieve accurate 
demodulation will be discussed. 

Fundamentally, for conventional demodulation, the maximum modulating frequency 
must be at least less than the carrier frequency, however this constraint alone does not 
provide a signal which is able to be accurately demodulated as only one set of 
sidebands may only be able to be used in the demodulation. We can in investigate this 
limitation by firstly expressing a phase modulated signal as its expanded Bessel 
series. 

        cos sin cosn
n

x t A t t A J t n t       




                 

As it can be seen, the spectrum of a modulated signal will have an infinite set of 
discrete frequencies located at the carrier frequency plus and minus the modulating 
frequency. Looking at the spectrum it will have components at n . When     
it is seen that there will be a frequency which is wrapped around zero by the second 
term in the series, i.e. the second sideband, this is illustrated in Figure 6 (left). 
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Figure 6 (left) , 10  10  , 1  . (right) 20  , 10  , 1   

This limitation can be discussed with the introduction of a term for the ratio of carrier 
to modulation frequency being: 

 R



  

It can be seen that first set of sidebands is corrupted by this frequency wrapping and 
that the sidebands equal or greater than the ratio R  will be completely corrupted by 
the frequency wrapping, this is shown in Figure 6, for 1R   and 2R   respectively. 
In general however, a ratio of 4R   is needed in order to obtain enough significant 
sidebands, which are not appreciably corrupted from frequencies wrapping around 
zero, for accurate demodulation. If an extreme case of carrier to modulating frequency 
ratio, of R = 1/6 is observed as in Figure 7, then it can be seen that the entire spectrum 
is corrupted by the negative frequencies, and therefore demodulation of a signal such 
as this is not able to be achieved with this form of demodulation, and can not be 
accomplished with any type of conventional demodulation. Some signals with 



specific characteristics can however be demodulated that violate these assumptions, 
with the use of unconventional methods, one example of this can be found in Ref. [3]. 

These limitations and indeed the whole phase demodulation theory can be applied to a 
modulating signal which is broadband in nature. In that case these bandwidth 
limitations apply to the highest frequency in the modulating signal. 
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Figure 7 10  , 60  , 5   

The value of R  such that the signal can be demodulated accurately is actually also a 
function of the modulation amplitude. For various modulation amplitude values, the 
estimate of the modulation amplitude is plotted for an increasing number of sidebands 
used in the demodulation. For instance you can see that for 8  , 9 sets of side bands 
are needed for a less than 1% error in the amplitude estimate. For this number of 
sidebands to be available for use in the demodulation without wrapping around the 
zero frequency, a ratio of R  needs to be greater than 9. If this condition is not adhered 
to then frequency wrapping can also occur as can be seen in Figure 9 where 30   
and 24R  . 

Two good rules of thumb that can be derived from these results, that should be 
adhered to for accurate demodulation are; Firstly 

RULE OF THUMB 1: 4R   

Secondly the modulation amplitude should be limited by: 

RULE OF THUMB 2: R   

This now brings up the question of how many sidebands should be included to obtain 
an accurate demodulation without undue computation cost? The number required for 
any given degree of accuracy can be obtained from observation of Figure 8 however a 
general criteria which is often used is only including sidebands up to when any higher 
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sidebands are less than 100 times smaller than the highest amplitude sideband. With 
the minimum lower limit on the number of sidebands included being 3 pairs. 

So the last rule of thumb for demodulation is that the number of sidebands that should 
be included be greater than 3 pairs of sidebands for a modulation amplitude of less 
than 2. 

RULE OF THUMB 3:   If 2   number of sidebands used in 
demodulation should be no less than 3 pairs. 
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Figure 8 Estimates of modulation amplitude with increasing number of sidebands used in the 

demodulation for different modulation amplitudes as shown 

Lastly filtering should generally be done whenever the full bandwidth is not being 
used for demodulation, which is normally the case. The signal should be band-pass 
filtered around the carrier and sidebands, that are to be used in the demodulation, to 
avoid distortion from out of band frequencies. For example it is shown in Figure 10 
the band-pass filtered spectrum for 2  , and using 4 pairs of sidebands for 
demodulation, which was stated earlier as being sufficient for a modulation amplitude 
of 2  . 
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Figure 9 Wrapping due to a large modulation amplitude. 240  , 10  , 30   
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Figure 10 (left) Spectrum and overlaid band-pass filter. (right) Band-pass filtered spectrum 
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