Epicyclic Gears

Aim of this note is to explain the direct method to solve problems with Epicyclic Gears The Epicyclic Gear first analysed here have the following components:

- 2 main shaft, input and output with angular velocity ω_{i} and ω_{o} respectively.
- A planet with 2 gears, $G_{p 1}$ and $G_{p 2}$
- 1 arm (R) connected to the input or output shaft
- 2 main gears G_{1} and G_{2} that are in contact with $G_{p 1}$ and $G_{p 2}$ respectively.

Procedure

1) Write down the two gear trains that share the arm (R) starting from the input shaft, usually the planet gear is the middle one. In case there is a third gear there will be 3 trains and then 3 equations. For example we can have $\left[G_{1}-G_{p 1}-\mathrm{R}\right]$. To define a train, consider that it has always the arm R, a gear of the planet and a main gear. Just eliminate one main gear per time.
2) The problem has 2 unknowns, the ratio ω_{i} / ω_{o} and ω_{p}, we need to write 2 equations:

- The first equation reads: $\quad \omega_{p}=\omega_{R}\left(1 \pm \frac{N_{1}}{N_{p 1}}\right) \mp \omega_{1} \frac{N_{1}}{N_{p 1}}$
- The second equation reads: $\omega_{p}=\omega_{R}\left(1 \pm \frac{N_{2}}{N_{p 2}}\right) \mp \omega_{2} \frac{N_{2}}{N_{p 2}}$
ω_{p} is the angular velocity of the planet, It will be the sum of different components, this is because the planet is rotating around a fixed axis but also around his own axis, for this reason it is called "planet" gear.
ω_{R} is the angular speed of the arm, equal to the input angular speed ω_{i} or output angular speed ω_{o}, depending on its location. ω_{1} and ω_{2} are the angular speed of the two gears G_{1} and $G_{2} . N$ is the gears' teeth number, the sign \pm depends on the type of gear and , '+ in sequence' is for external gears. Before explaining the meaning of the equations, let's show an EXAMPLE 1. We have the following epicyclic gear:

The two trains are:

$\left[G_{1}-G_{p 1}-R\right]$

$\left[G_{2}-G_{p 2}-R\right]$

In this case the following apply:
$\omega_{1}=\omega_{i}$
$\omega_{R}=\omega_{o}$
$\omega_{2}=0$
Then the system of two equations to solve by elimination of ω_{p} simply reads:
$\omega_{p}=\omega_{o}\left(1+\frac{N_{1}}{N_{p 1}}\right)-\omega_{i} \frac{N_{1}}{N_{p 1}}$
$\omega_{p}=\omega_{R}\left(1-\frac{N_{2}}{N_{p 2}}\right)$

Quick explanation

Let's refer to the first equation. The motion of the planet is a revolution around a fixed axis plus a rotation around its own axis. The planet is driven by the arm R that is rotating at ω_{R}, so the arm gives the planet's revolution angular velocity $\omega_{\text {rev }}=\omega_{R}$. The rotation $\omega_{\text {rot }}$ around its axis is given by the connection with the gear G_{1} that is also rotating at its own rotation speed ω_{1}, the direction depends on the location of the gear. Then the total angular velocity of the planet can be written as the sum of two components:

$$
\omega_{p}=\omega_{r e v}+\omega_{r o t}
$$

Revolution motion: $\quad \omega_{\text {rev }}=\omega_{R}$
Rotation on his own axis: $\quad \omega_{\text {rot }}=\left(\pm \omega_{R} \mp \omega_{1}\right) \frac{R_{1}}{R_{p 1}}$
Arranging and considering that $\frac{R_{1}}{R_{p 1}}=\frac{N_{1}}{N_{p 1}}$ we get the formula:
$\omega_{p}=\omega_{R}\left(1 \pm \frac{N_{1}}{N_{p 1}}\right) \mp \omega_{1} \frac{N_{1}}{N_{p 1}}$

Rigorous explanation

Considering the velocities of the contact point A and of the centre of the planet O_{p} according to the sign convention $R C$

The velocity of point A where G_{1} is in contact with $G p_{1}$, can be written considering it as belonging to the gear $G_{1}\left(\left.\mathbf{v}_{A}\right|_{1}\right)$ or to the planet $\left(\left.\mathbf{v}_{A}\right|_{p}\right)$ (the velocities are positive in left direction). Then we have:
$\left.\mathbf{v}_{A}\right|_{1}=\boldsymbol{\omega}_{1} \times \overrightarrow{O_{1} A}$
$\left.\mathbf{v}_{A}\right|_{p}=\mathbf{v}_{O_{p}}+\boldsymbol{\omega}_{p} \times \overrightarrow{O_{p} A}$
with $\mathbf{v}_{O_{p}}=\boldsymbol{\omega}_{R} \times \overrightarrow{O_{1} O_{p}}$

If the main gear G_{1} has internal or external teeth, we get different solutions:

External teeth: $\overrightarrow{O_{1} O_{p}}=\mathbf{R}_{p 1}+\mathbf{R}_{1}$

$$
\overrightarrow{O_{p} A}=-\mathbf{R}_{p 1}
$$

Internal teeth: $\overrightarrow{O_{1} O_{p}}=\mathbf{R}_{1}-\mathbf{R}_{p 1}$ $\overrightarrow{O_{p} A}=\mathbf{R}_{p 1}$

Then, writing the moduli of the vectors (with the sign convention of $R C$):

External teeth gear:
$v_{O_{p}}=\omega_{R}\left(R_{p 1}+R_{1}\right)$
$\left.v_{A}\right|_{1}=\omega_{1} R_{1} \quad,\left.\quad v_{A}\right|_{p}=\omega_{R}\left(R_{p 1}+R_{1}\right)-\omega_{p} R_{p 1}$

Internal teeth gear:
$v_{O_{p}}=\omega_{R}\left(R_{1}-R_{p 1}\right)$
$\left.v_{A}\right|_{1}=\omega_{1} R_{1} \quad,\left.\quad v_{A}\right|_{p}=\omega_{R}\left(R_{1}-R_{p 1}\right)+\omega_{p} R_{p 1}$

Since $\left.v_{A}\right|_{1}=\left.v_{A}\right|_{p}$,
we get $\omega_{p}=\omega_{R}\left(1 \pm \frac{R_{1}}{R_{p 1}}\right) \mp \omega_{1} \frac{R_{1}}{R_{p 1}}$
usually written in terms of teeth number instead of the radii:

$$
\omega_{p}=\omega_{R}\left(1 \pm \frac{N_{1}}{N_{p 1}}\right) \mp \omega_{1} \frac{N_{1}}{N_{p 1}} \quad(+)(-) \text { for external teeth, (-)(+) for internal teeth }
$$

We can notice that, considering a reference position of the planet on the highest location:

- External teeth gear: the contact point A is on the bottom of the planetary gear
- Internal teeth gear: the contact point A is on the top of the planetary gear

It follows that in case we have an external teeth gear but it is conical and then the contact point A is on the top of the planetary gear, the formula to use is the same as in case with internal teeth. (see EXAMPLE 2 and 3)

EXAMPLE 2

Consider now a planetary gear with 3 main gears shown in the figure below:

The Epicyclic Gear has then following components:

- 2 main shaft, input and output with angular velocity ω_{i} and ω_{o} respectively.
- A planet (in red) with 2 gears, $G_{p 1}$ and $G_{p 2}$
- $\quad 1 \operatorname{arm}(R)$ (in green)
- 3 main gears G_{1}, G_{2} and G_{3} (in blue colour) that are in contact with the gears of the planet. This time $G_{p 1}$ is in contact with 2 main gears, G_{1} and G_{3}

As before we have to define the trains, this time we have 3 trains since there are 3 main gears:

The problem has 2 unknowns as before, the ratio ω_{i} / ω_{o} and ω_{p}, plus a third unknown that is ω_{R}, this is because here the arm R is free to rotate while before was directly connected to the input shaft. Now we need to write 3 equations corresponding to the 3 trains above:

1) The first equation reads: $\quad \omega_{p}=\omega_{R}\left(1+\frac{N_{1}}{N_{p 1}}\right)-\omega_{1} \frac{N_{1}}{N_{p 1}}$
2) The second equation reads: $\quad \omega_{p}=\omega_{R}\left(1-\frac{N_{3}}{N_{p 1}}\right)+\omega_{3} \frac{N_{3}}{N_{p}}$
3) The second equation reads: $\quad \omega_{p}=\omega_{R}\left(1-\frac{N_{2}}{N_{p 2}}\right)+\omega_{2} \frac{N_{2}}{N_{p 2}}$

Note that $\omega_{3}=0$ since the gear G_{3} is fixed.
The signs in the equations 2 and 3 are because the gears G_{2} and G_{3} behave like external gear (i.e. the contact is on the top of the planetary gears).

We can get the ratio ω_{1} / ω_{2} solving the system of the three equations.

EXAMPLE 3

How should we deal with a case in which the planet axis is vertical in his highest location as in figure below?

We can see this case as a limit for the angle $\vartheta \rightarrow 0$, this angle is defined as in the figure before, then G_{1} will behave as an external teeth gear and G_{2} as an internal teeth gear as in the limit the contact point is on the top of the planetary gear.

1) The first equation reads: $\quad \omega_{p}=\omega_{R}\left(1+\frac{N_{1}}{N_{p 1}}\right)-\omega_{1} \frac{N_{1}}{N_{p 1}}$
2) The second equation reads: $\quad \omega_{p}=\omega_{R}\left(1-\frac{N_{2}}{N_{p 1}}\right)+\omega_{2} \frac{N_{2}}{N_{p 1}}$

$$
\begin{aligned}
& \omega_{p}=\omega_{R}\left(1+\frac{N_{1}}{N_{p 1}}\right)-\omega_{1} \frac{N_{1}}{N_{p 1}} \\
& \omega_{p}=\omega_{R}\left(1-\frac{N_{2}}{N_{p 1}}\right)+\omega_{2} \frac{N_{2}}{N_{p 1}}
\end{aligned}
$$

A common application of this planetary gear is the differential gear in a car, in this case, $N_{1}=N_{2}$ and there are some interesting situations:

If $\omega_{1}=\omega_{2} \rightarrow \omega_{R}=\omega_{p}=\omega_{1}$, the planet just spin around but no rotation around his own axis

If $\omega_{2}=0 \rightarrow \omega_{R}=\frac{\omega_{1}}{2}$

